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Abstract. A diabatic (configuration-fixed) constrained approach to calculate the potential energy surface
(PES) of the nucleus is developed in the relativistic mean-field model. As an example, the potential energy
surfaces of 2°Pb obtained from both adiabatic and diabatic constrained approaches are investigated and
compared. It is shown that the diabatic constrained approach enables one to decompose the segmented
PES obtained in usual adiabatic approaches into separate parts uniquely characterized by different con-
figurations, to follow the evolution of single-particle orbits till the very deformed region, and to obtain
several well-defined deformed excited states which can hardly be expected from the adiabatic PESs.

PACS. 21.10.Dr Binding energies and masses — 21.10.Re Collective levels — 21.60.Jz Hartree-Fock and
random-phase approximations — 21.10.Pc Single-particle levels and strength functions

1 Introduction

The relativistic mean-field (RMF) theory is one of the
most successful microscopic models in nuclear physics.
The RMF theory incorporates from the beginning very
important relativistic effects, such as the existence of two
types of potentials (Lorentz scalar and four-vector) and
the resulting strong spin-orbit interaction, a new satu-
ration mechanism by the relativistic quenching of the
attractive scalar field, and the existence of anti-particle
solutions. The Lorentz covariance and special relativity
make the RMF theory more appealing for studies of high-
density and high-temperature nuclear matter [1-3]. It has
achieved success in describing many nuclear phenomena
for stable nuclei [2,3], exotic nuclei [4,5] as well as su-
pernova and neutron stars [6]. The RMF theory provides
a new explanation for the identical bands in superde-
formed nuclei [7] and the neutron halo [4]; predicts a new
phenomenon —giant neutron halos in heavy nuclei close
to the neutron drip line [5,8]; gives naturally the spin-
orbit potential, the origin of the pseudospin symmetry [9,
10] as a relativistic symmetry [11-13], and spin symme-
try in the anti-nucleon spectrum [14], and well describes
the magnetic rotation [15], the collective multipole excita-
tions [16], and the properties of hypernuclei, etc. Lately,
the ground-state properties of over 7000 nuclei have been
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calculated in the RMF+BCS model and good agreements
with existing experimental data are obtained [17]. Recent
and more complete reviews of the applications of the RMF
model, particularly those on exotic nuclei, can be found
in refs. [18,19].

In order to describe the shape of the atomic nucleus
and understand the fusion and fission processes, it is cru-
cial to obtain the potential energy surface (PES) of the
nucleus as a function of the deformation [20]. In phe-
nomenological methods, the PES is obtained by minimiz-
ing the total energy of the system with some shape pa-
rameters. In microscopic models, such as Skyrme-Hartree-
Fock and RMF model, PES can be obtained in a con-
strained calculation. There are two different ways to ob-
tain the PES, i.e., adiabatic and configuration-fixed (dia-
batic) constrained approaches. In the adiabatic approach,
one always occupies the orbital that results in the low-
est configuration energy. However, the PES obtained in
adiabatic calculations may correspond to different config-
urations wherever there is orbital crossing. To obtain the
PES for a given configuration, the concept of the so-called
“parallel transport” should be used, which enables one
to decompose the ground state PES into separate parts
uniquely characterized by the quantum numbers of the oc-
cupied orbits [21,22]. This configuration-fixed constrained
approach is often referred to as the diabatic constrained
approach in the literature [21-23].
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The diabatic constrained approach is useful to investi-
gate level crossings which lead to flip-flop situations. It is
also useful in the Generator-Coordinate-Method (GCM)
calculations in cases that excited configurations are in-
cluded. Although the so-obtained excited states cannot al-
ways be identified as physical states since the solutions of
the corresponding equations violate the variational prin-
ciple, the diabatic constrained approach may serve as a
basis to qualitatively understand the excited states and
the interplay between the excited states and the ground
state. To describe these more quantitatively, one certainly
should go beyond the mean-field level.

Conventionally, the diabatic constrained method has
been combined with the non-relativistic approaches,
such as shell model, Skyrme- or Gogny-Hartree-Fock or
Hartree-Fock-Bogoliubov methods, in understanding the
properties of atomic nuclei, including high-spin states [23],
level crossings [24], fusion and fission processes [25], etc.
For example, the interesting phenomenon of shape coex-
istence [26] can be studied using PES in complementary
to the conventional interpretation of many-particle many-
hole excitations [27]. In the RMF model, the diabatic con-
strained method has not received enough attention com-
pared with that of the adiabatic constrained method and
the non-relativistic ones. Therefore, the purpose of this pa-
per is to develop the diabatic constrained approach within
the RMF model and the doubly magic nucleus 2°8Pb is
chosen as an example for demonstration.

This paper is organized as follows: sect. 2 contains
an outline of the RMF model. The adiabatic and dia-
batic constrained PES in 2°8Pb, together with the dia-
batic single-particle spectra of the spherical ground state,
are analyzed in sect. 3. The results are briefly summarized
in sect. 4.

2 Theoretical framework

The relativistic mean-field model describes the nucleus as
a system of Dirac nucleons which interact in a relativistic
covariant manner via the meson fields. The meson fields
considered in most applications of the RMF model are the
scalar-isoscalar sigma meson, vector-isoscalar omega me-
son, vector-isovector rho meson and the photon: the sigma
meson provides the long-range attractive interaction, the
omega meson provides the short- and mid-range repulsive
interaction, the rho meson is responsible for the isospin de-
pendence of the nuclear force while the photon accounts
for the electromagnetic interaction. The Lagrangian den-
sity used in our present calculation is of the following form:
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where 1) is the Dirac spinor and ¢ = 917°. m, m,, my,,
and m, are the nucleon, o, w and p meson masses, re-
spectively, while g,, g2, g3, 9w, €3, gp, and € /47 = 1/137
are the corresponding coupling constants for the mesons
and the photon. The field tensors of the vector mesons (w
and p) and of the electromagnetic fields take the following
form:

QM = Ohw? — 9% wh, (2a)
RM = 9Mp" — ¥ " — 2g,5" x ", (2b)
V= OFAY — ¥ A (2¢)

With the classical variational principle, one can obtain the
coupled equations of motion, i.e., the Dirac equation for
the nucleons and the Klein-Gordon—type equations for the
mesons and the photon. In the most general case, these
equations are very difficult to solve; therefore various sym-
metries must be utilized to simplify them.

In the case of an axially symmetric system, the pro-
jection of the angular momentum on the z-axis, {2, and
the parity, 7, are good quantum numbers. Here, we con-
sider only even-even nuclei, therefore time reversal sym-
metry is conserved. To solve the RMF equations for an
axially symmetric system, we expand the Dirac spinors
and the Boson fields with the eigenfunctions of a de-
formed harmonic-oscillator potential in cylindrical coor-
dinates [28], i.e.,
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In this paper, 20 oscillator shells have been used to expand
both the Fermion fields and Boson fields to guarantee con-
vergence.

The potential energy surface is obtained through the
constrained calculation. More specifically, the binding en-
ergy at certain deformation is obtained by constraining
the quadruple moment <Q2> to a given value p, i.e.,

(H') = (H) + 30(@s) — ), (@
with . . .
(Q2) = (@2)n + (Q2)yp. (5)

where <Q2)n’p = (2r2Ps(cosd))n, = (222 — 22 — ¥y
and C is the curvature constant parameter. The more of-
ten used deformation parameter 35 is related with the ex-

pectation value (Q,) by (Q2) = \/%ATQBQ, r = RyA'/3
T

(Ro = 1.2fm) and A is the mass number. By varying u,
the binding energy at different deformation can be ob-
tained. In principle, one has to follow a multidimensional
energy surface. However, for the sake of efficiency, a one-
parameter line, e.g. (32, is often used in microscopic con-
strained RMF calculations due to the self-consistency [29]
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and the small effects of other deformations, such as the
hexadecupole deformation.

In order to obtain the diabatic PES with a fixed con-
figuration, the occupied orbits are determined by the so-
called “parallel transport”, i.e.,

(Wi(@)|vj(q + Ag))| ag—o ~ i, (6)

where ¢ and j enumerate all the single-particle states of
two adjacent configurations. In such a way, the original
configuration at ¢ can be tracked and the corresponding
PES can be obtained as a function of the deformation [30].
In principle, if Aq is small enough, the configuration
at ¢ + Aq should be the same as that at q. However, due
to numerical difficulties, the condition in eq. (6) cannot
be rigorously implemented. Therefore, the following pro-
cedures are adopted in our study: First, the wave func-
tion and occupation number of every state at the initial
configuration ¢ are recorded. Second, for each state i at
configuration ¢, we search all the states of configuration
q + Aq for state j that has the largest overlap with state
1. It is to be noted that state ¢ and state j have the same
quantum numbers 2. Once state j is determined, the oc-
cupation number of state i will be transferred to state j.
This procedure is repeated till the occupation number of
each state at configuration ¢ + Agq is fixed. In cases that
many single-particle states with the same symmetry are
very close to each other, we adjust the step size of Aq to
avoid the mismatch of the single-particle configuration.

3 Results and discussion

In the preceding section, we described how to implement
the diabatic constrained method within the relativistic
mean-field model. In this section, we would like to com-
pare the results obtained with this method and those with
the usual adiabatic constrained one. For this purpose, we
study the potential energy surface of 2°8Pb. This nucleus
is chosen due to the following considerations: First, its
properties can be well described by the RMF model; sec-
ond, as a doubly magic nucleus, the pairing correlation
can be safely ignored. The latter is particularly important
because the pairing correlation can complicate the issue
dramatically [24]. Taking into account the pairing corre-
lation, such as using a constant gap pairing scheme, does
not qualitatively alter our results and the corresponding
conclusions. However, in the presence of the pairing corre-
lation, due to the fractioned occupation number, it is not
convenient to track configuration changes and discuss the
relevant physics. Therefore, only the results without the
pairing correlation are presented. It should be mentioned
that the parameter set used is PK1, which has been care-
fully adjusted to reproduce both the nuclear-matter satu-
ration properties and the ground-state properties of finite
nuclei with a microscopic recipe for the center-of-mass cor-
rection [31].

In fig. 1, the PES of 28Pb obtained from adiabatic
(open circle) and diabatic (solid line) calculations are plot-
ted as functions of the deformation parameter 5. Surpris-
ingly, it is found that even for 2°8Pb, which has a rigid
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Fig. 1. (Color online) Potential energy surfaces of 2°*Pb ob-
tained in adiabatic (open circles) and diabatic calculations
(solid lines). The local minima on the corresponding diabatic
PES are denoted as stars and labelled by different capital let-
ters, whose configuration, binding energy and deformation are
tabulated in table 1.

spherical shape at the ground state, the adiabatic PES
is somewhat complicated, which can be easily seen from
the many broken regions on the PES. The fact that there
exists an un-converged region on the adiabatic PES has
been known for a long time. Over the years, it has been
argued that it might originate from i) the abrupt change
of configuration at a certain point due to the no cross-
ing rule [29]; ii) change of the mean fields due to varied
configuration [30]; and/or iii) the increased mixing of all
low-lying states due to their near degeneracy [32]. On the
other hand, the diabatic method is known to be able to
connect, broken regions existing in the adiabatic method.
This can be clearly seen in fig. 1. In addition, from fig. 1,
as expected, one can see that the diabatic results (solid
lines) can reproduce the adiabatic results (open circles)
very well if they both exist at the same region.

It should be noted that several local minima which do
not exist on the adiabatic PES appear on the diabatic one.
These minima, which could be viewed as excited states,
are denoted as stars and labelled by capital letters in fig. 1.
Since in the diabatic method, the single-particle levels of
each configuration can be unambiguously determined (see
the preceding section), we tabulate the corresponding con-
figuration of each new local minimum in table 1. Each
minimum is labelled by a bracket (E,,S2), where E, is
the excited energy relative to the ground state A and fs
is the corresponding deformation parameter. The configu-
ration of each state is given with respect to its core listed
in the second row of the table. The configuration of state F
relative to that of state E is not given simply because the
difference between these two configurations is too large to
fit into the table. We would like to point out a few more
interesting things:

— From table 1, it is seen that for most cases both neu-
trons and protons are excited as configuration changes
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Table 1. Configurations of the five local minima (B, C, D, E, G) on the diabatic potential energy surfaces of 2°*Pb (see also
fig. 1). Each minimum is labelled by a bracket (E;, 32) where E, is the excited energy relative to the ground state A and 3,
the corresponding deformation parameter. The configuration of each state is relative to the core as listed in the second column.

State Core Configuration
m 14
B (7.63,—0.11) A (351/2) 1(1hg)s)" (3p1/2) " (Lig1 o)
¢ (15.63,-0.28) B (2d3/2) " (Linay2)' (2f2/2)" (3ps/2) > (299/2) ' (L1s/2)"
D (21.19,—0.39) C (2fs2) " (2ho2) (Ljrg)a)"
E  (21.13,0.21) A (351/2) 7" (2d5/2) "' (1hg)2)? (3p1/2)~ " (2f5/2)2(299/2)*(Lir1/2)"
G (19.19,0.69) | F | (1gz2) "(1hi12) "(Thoy2) (lixs/2)" | (3paj2) *(2fr/2) " (Lir12)  (1j1s)2)"

from one to the neighboring excited state. This might
be related to the strong interaction between neutrons
and protons. In this sense, a self-consistent calculation,
such as the present one, is important to take care of
this interaction and yields reliable results.

— Due to the fact that different local minima have dif-
ferent configurations, even the barrier between them
is very small, they can still be well defined, such as B
and A, F and G [21].

In fig. 1, the diabatic potential (solid curve) in fig. 1
show discontinuity around the deformations § ~ 0.4,
which is due to the absence of the other diabatic curves
with different configurations. If more careful diabatic con-
strained calculations with these configurations were done,
the diabatic curves would become continuous and the two
values at some quadrupole deformations, e.g., § ~ 0.4,
would belong to one or two of these diabatic curves.

To provide a microscopic explanation of fig. 1, we plot
the single-particle spectra of 2°8Pb near the Fermi level
obtained from the diabatic calculation in fig. 2. Solid (dot-
dashed) lines represent positive (negative) parity, filled
(open) circles label the occupied (unoccupied) states, and
the original configuration is that of the spherical case A
(see fig. 1). The level crossing regions are highlighted by
rectangles. From the top panel of fig. 2, one can easily see
those high-j levels originating from 1hg,, come down while
those low-j levels, such as 3s;/, and 2d3/2, go up as the
nucleus becomes more oblate. At around 8 ~ —0.1, the
first level crossing happens between 3s,,, and one 1hg /o
state. The same is true for neutrons, in particular, the
first level crossing happens between 3p; /> and one 1iy; /5
state at |32] slightly larger than that where the first proton
level crossing occurs. It shows that a diabatic calculation
is important to obtain the smooth evolution of the single-
particle levels as a function of deformation. Otherwise ir-
regularity of the single-particle levels will appear due to
the occupation of the lower orbits in the adiabatic calcu-
lation. We should point out that here proton and neutron
level crossings occur almost simultaneously mainly due to
the fact that their corresponding Fermi levels are close to
each other in the case of 2°8Pb. It may not be the case
for either proton- or neutron-rich nuclei where the proton
and neutron Fermi surfaces are quite different. Beyond
the crossing points, high-j levels continue coming down

€ (MeV)

Fig. 2. (Color online) Proton (top panel) and neutron (bottom
panel) single-particle states of °*Pb obtained in diabatic calcu-
lations as functions of the deformation parameter 32. The solid
lines and the dot-dashed lines represent positive- and negative-
parity states, respectively. The filled (open) circle denotes
whether the corresponding state is occupied (unoccupied). The
original configuration is that of the ground state. For the sake
of clarity, only those states near the fermi surface are shown;
and the level crossing points are highlighted by rectangles.

while low-j levels continue going up, which results in a
very steep potential energy surface. This is the case for
most diabatic PESs displayed in fig. 1.
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Fig. 3. (Color online) Proton (top panel) and neutron (bottom
panel) single-particle states of 2°® Pb obtained in adiabatic cal-
culations as functions of the deformation parameter >. Lines
and symbols as in fig. 2.

Finally, we plot the adiabatic single-particle levels in
fig. 3. They look similar to those shown in fig. 2 but differ
in two aspects. First, the diabatic single-particle levels are
continuously distributed as functions of S5 but the adia-
batic single-particle levels are not. Their broken pattern
is the same as that of the adiabatic PES shown in fig. 1.
The underlying reason is, as we have mentioned above,
that the sudden jump of the adiabatic PES is mostly
due to the abrupt change of the corresponding configu-
ration [30]. For example, the crossing of 3p;/» and 1iq1 /s
at B2 ~ —0.1 results in the broken PES shown in fig. 1.
Second, the diabatic single-particle levels are occupied ac-
cording to the dictated configuration but the adiabatic
single-particle levels are so occupied to give the largest
binding energy.

4 Summary

A diabatic constrained relativistic mean-field approach is
proposed to calculate the potential energy surface of the
nucleus and applied to 2°8Pb. Although both adiabatic
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and diabatic constrained calculations yield almost the
same ground-state PES, the diabatic one has the advan-
tages that it enables one i) to decompose the segmented
PES obtained in usual adiabatic approaches into separate
parts characterized uniquely by different configurations;
and ii) to define the single-particle orbits at each defor-
mation by their quantum numbers unambiguously deter-
mined from their counterparts at the spherical configura-
tion. Thus, the physics behind the adiabatic PES can be
understood more clearly in the diabatic picture.
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and 10447101, and by the Doctoral Program Foundation from
the Ministry of Education in China.
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